

DEPARTMENT OF SCIENCE

COURSE OUTLINE – FALL 2011 MA 1130 B2 ELEMENTARY CALCULUS I

INSTRUCTOR: Tom McLeister **PHONE:** (780) 539-2961

OFFICE: C220 **EMAIL:** tmcleister@gprc.ab.ca

OFFICE

HOURS: M 13:00 – 14:20 T R 10:00 -11:30 F 11:30 – 12:50

PREREQUISITE: Pure Mathematics 30

REQUIRED TEXT/RESOURCE MATERIALS:

Stewart: Single Variable Calculus, 7E, Brooks/Cole 2012.

CALENDAR DESCRIPTION:

The course will include a review of analytic geometry; functions, limits, continuity; differentiation of elementary functions; applications to maxima, minima and rates; introduction to integration; Fundamental Theorem; numerical integration; and areas and other applications of the definite integral to areas.

CREDIT/CONTACT HOURS: 3 (3-2-0) UT

DELIVERY MODE(S):

Lecture:		13:00 - 14:20	W F	J203
Seminar:	BS1	14:30-16:20	T	J203
	BS2	14:30-16:20	R	J203

COURSE OBJECTIVES:

At the end of this course, students should be able to...

- State the definition of a function and describe the various ways a function can be represented;
- Find the domain and range of a function;
- Compose functions;
- Calculate limits of functions, including rational and trigonometry functions, using the limit laws;
- Identify points or intervals where a function is continuous/discontinuous;
- Calculate derivatives of functions using the limit definition and the differentiation rules;
- Estimate the value of a function at a point using the tangent line (linear) approximation or differentials;
- Calculate derivatives implicitly and solve related rates problems;
- Sketch the graph of a function and indicate the extreme values, points of inflection, vertical and horizontal asymptotes, and intervals of concavity;
- Apply calculus to solve optimization problems;
- Calculate definite integrals using Riemann sums and the Fundamental Theorem of Calculus;
- Calculate definite and indefinite integrals using tables of integrals and substitution;
- Use the definite integral to find the area between curves.

TRANSFERABILITY:

UA, UC, UL, AU, GMU, Other. Consult the Alberta Transfer Guide for more information.

Note: Grade of D or D+ may not be acceptable for transfer to other post-secondary institutions. Students are cautioned that it is their responsibility to contact the receiving institutions to ensure transferability.

GRADING CRITERIA:

GRANDE PRAIRIE REGIONAL COLLEGE							
GRADING CONVERSION CHART							
Alpha Grade	4-point Equivalent	Percentage Guidelines	Designation				
\mathbf{A}^{+}	4.0	90 – 100	EXCELLENT				
A	4.0	85 – 89					
\mathbf{A}^{-}	3.7	80 – 84	FIRST CLASS STANDING				
\mathbf{B}^{+}	3.3	77 – 79					
В	3.0	73 – 76	COOD				
B ⁻	2.7	70 – 72	GOOD				
C ⁺	2.3	67 – 69	SATISFACTORY				
C	2.0	63 – 66					
C -	1.7	60 - 62					
\mathbf{D}^{+}	1.3	55 – 59	MINIMAL PASS				
D	1.0	50 – 54					
F	0.0	0 – 49	FAIL				
WF	0.0	0	FAIL, withdrawal after the deadline				

EVALUATIONS:

Assignments: 10% Quizzes: 15%

Midterm: 25% (Wednesday, October 26, 2011)

Final Exam: 50% (Cumulative and scheduled during exam period, TBA)

Note: There will be no make-up quizzes or exams. If a quiz/test is missed for a valid reason and proper documentation is provided, then the weight of the quiz/test will be transferred to another component. Late assignments will not be accepted.

STUDENT RESPONSIBILITIES:

Attend all lectures and seminars. If a lecture or seminar is missed, it is the student's responsibility to catch up on the material and obtain the missing lecture notes.

STATEMENT ON PLAGIARISM AND CHEATING:

Refer to the Student Conduct section of the College Admission Guide at http://www.gprc.ab.ca/programs/calendar/ or the College Policy on Student Misconduct: Plagiarism and Cheating at www.gprc.ab.ca/about/administration/policies/

COURSE SCHEDULE/TENTATIVE TIMELINE:

Week	Topics	Notes
1. Sept. 5-9	Precalculus Review	First class: Fri, Sept. 9
2. Sept. 12-16	Functions, Limits &	
3. Sept. 19-23	Continuity	
4. Sept. 26-30	§1.1-1.6,1.8	
5. Oct. 3-7	Differentiation	
6. Oct. 10-14	§2.1-2.9	Thanksgiving, Monday
		Oct. 10 – no classes
7. Oct. 17-21		
8. Oct. 24-28	Applications of	Midterm (Wed. Oct.
	Differentiation	26 th)
9. Oct. 31-Nov.4	§3.1-3.5,3.7	Nov. 2, last day to
	§3.8 (optional)	withdraw
10. Nov. 7-11		Remembrance Day,
		Friday Nov. 11 – no
		classes
11. Nov. 14-18	Integration	
12. Nov. 21-25	§3.9,4.1-4.5	
13. Nov. 28-Dec. 2	1	
14. Dec. 5-9	Applications of	
	Integration/Review	
	§5.1	
15. Dec. 12-21		Final Exams