

DEPARTMENT OF SCIENCE

COURSE OUTLINE – Fall 2017 BC 2000 – INTRODUCTORY BIOCHEMISTRY

3 (3-0-0) 45 HOURS FOR 15 WEEKS

INSTRUCTOR:	Philip Johnso	n PHONE:	780-539-2863
OFFICE:	J224	E-MAIL:	PJohnson@gprc.ab.ca
OFFICE HOURS:	Tuesdays Thursdays Fridays	1000-1120 hrs & 1 1000-1120 hrs 1120-1250 hrs	300-1420 hrs

PREREQUISITE(S)/COREQUISITE: CH 1010 and CH 1610 or CH 2610

REQUIRED TEXT/RESOURCE MATERIALS:

"Essential Biochemistry" (4th Edition, 2018 **or** 3rd Edition, 2014) Charlotte W. Pratt and Kathleen Cornely John Wiley & Sons Inc. Publishers

SUPPLEMENTS:

Practice quizzes will be made available on Moodle to aid preparation for exams. These can be completed at any time by students.

A link to the textbook website is also available on Moodle. This site provides access to a number of useful resources.

CALENDAR DESCRIPTION: An introduction to the fundamental principles of biochemistry. Protein structure and function; lipids and the structure of biological membranes; nucleotides and the structure of nucleic acids; bioenergetics and the metabolism of carbohydrates, lipids and nitrogen; the integration and regulation of cellular metabolism. This course is designed both for students who require a single term course in the fundamental principles of biochemistry, **AND** for students who intend to take further courses in biochemistry.

CREDIT/CONTACT HOURS: 3 credits (3-0-0)

DELIVERY MODE(S):	Classes	Monday	1130-1250 (J201)
		Friday	1000-1120 (J201)

COURSE OBJECTIVES:

1. To gain an understanding of biochemical reactions and pathways.

2. To develop critical thinking skills with respect to biochemistry.

LEARNING OUTCOMES:

1. Students should know the reactions of common metabolic pathways.

2. Students should understand how metabolic pathways are integrated.

3. Students should understand the relationship between metabolism and disease.

TRANSFERABILITY:

University of Alberta (Biochemistry 200) University of Calgary (Biochemistry 341)

EVALUATIONS:	Mid-term Exam I	30%
	Mid-term Exam II	30%
	Final Exam	40%

GRADING CRITERIA:

GRANDE PRAIRIE REGIONAL COLLEGE				
GRADING CONVERSION CHART				
Alpha Grade	4-point	Percentage	Designation	
\mathbf{A}^+	4.0	90 - 100	EXCELLENT	
Α	4.0	85 - 89	EXCELLENT	
A-	3.7	80 - 84	FIRST CLASS STANDING	
B ⁺	3.3	77 – 79		
В	3.0	73 - 76	GOOD	
B ⁻	2.7	70 - 72	0000	
C+	2.3	67 - 69		
С	2.0	63 - 66	SATISFACTORY	
C-	1.7	60 - 62		
\mathbf{D}^+	1.3	55 - 59	MINIMAL PASS	
D	1.0	50 - 54	WIINIWIAL FASS	
F	0.0	0-49	FAIL	
WF	0.0	0	FAIL, withdrawal after the deadline	

** Grade of D or D+ may not be acceptable for transfer to other post-secondary institutions. Students are cautioned that it is their responsibility to contact the receiving institutions to ensure transferability

Торіс	3 rd Edition pages	4 th Edition pages
Biological Molecules		
Types of biomolecules	3-6	3-6
Biopolymers	6-10	6-9
Nucleosides and nucleotides	52-55	52-55
Basic structure of DNA and RNA	56-61	56-61
Functions of Nucleic acids (Central Dogma)	61-65	61-64
Protein Structure and Function		
Overview	87-88	85
Amino acids	89-91	86-90
Peptide bonds and primary structure	91-96	90-94
Secondary structures	96-99	94-97
Tertiary structure and stabilization	99-104	97-101
Protein folding & Quarternary structure	104-108	101-106
Oxygen binding to myoglobin and haemoglobin	122-133	120-129
Lipids and Biological Membranes		
Fatty acids, triacylglycerols and membrane lipids	220-227	215-222
Lipid bilayers and membrane fluidity	227-230	222-225
Membrane proteins	230-233	225-228
Fluid Mosaic Model	233-234	228-229
Passive & Active membrane transport	246-255	240-248
Enzymes		
What is an enzyme?	158-161	154-157
Classifying enzymes	161-162	157-158
Co-enzymes and dietary vitamins	54-55; 320-322	54-55; 312-314
Catalytic mechanisms	162-171	158-166
Substrate binding	171-174	166-171
Enzyme kinetics	188-198	183-192
Enzyme inhibition	200-209	194-200
Allosteric enzymes	209-211	200-203

BC2000 Fall 2017-18 - Topic Outline & Text Readings

Other in vivo regulatory mechanisms	211	203
Co-enzymes and roles as electron carriers	316-317	308-309
Introduction to Metabolism		
	10-14	10-14
Energy and metabolism	_	-
Food and Fuel	308-311	301-303
Storage and use of fuels	312-314	304-306
Metabolic pathways and common intermediates	314-316	306-308
Oxidation and reduction	316-317	308-309
Overview of metabolism	318-320	310-312
Free energy changes in metabolic reactions	323-325	314-316
Energy currency, ATP, coupled reactions	325-330 Fig 3-3a	316-321 Fig 3-2a
		-
Glucose Metabolism		
Introduction	290-294, 359 338-33	283-287; 349; 32
Glycolysis	339-350	330-340
Fates of Pyruvate	350-354	341-344
Anaerobic exercise and the Cori Cycle	513-514	499-500
Gluconeogenesis and Glycogen metabolism	354-359	344-349
Pentose phosphate pathway	361-363	350-352
Summary of glucose metabolism	363-364	352-353
Hormonal regulation	515-518; 277-280; 522-523	501-505; 270-273 509-510
Citric Acid Cycle and Oxidative Phosphorylation		
Introduction	370-371	362
Conversion of pyruvate to acetyl-CoA	371-374	362-365
Reactions of the Citric Acid Cycle	374-381	365-372
Regulation of the Citric Acid Cycle	381-382	372-373
Catabolism, anabolism and anapleurotic reactions	384-388	374-378
Overview of oxidative phosphorylation	394-395	385
Mitochondria and Electron transport chain	399-408	390-399
Chemiosmosis	408-410	399-401
ATP synthase	410-414	401-405
ATP yield from aerobic catabolism of glucose	380-381	372

Metabolism of Fats, Fatty Acids and Cholesterol		
Overview of fat metabolism	Fig. 17-4	Fig. 17-4
Transport of lipids	443-444	432-434
TAG synthesis	463-465	452-454
Lipases and TAG breakdown	445	435
Degradation of fatty acids (activation & transport)	445-446	435-436
Degradation of fatty acids (β -oxidation)	446-453	436-443
Glyoxylate cycle	386	377
Fatty acid synthesis	453-459	443-449
Regulation of fatty acid metabolism	459-460	449-450
Fat metabolism and diabetes	522-524	509-511
Ketone bodies and ketogenesis	461-462	450-452
Cholesterol synthesis and regulation	466-467	454-457
Fates of cholesterol	467-467	454-457
"Good" and "Bad" cholesterol	458 Box 17A	Box 17A
Nitrogen Metabolism		
Nitrogen fixation and assimilation	475-478	464-467
Transamination and amino acid synthesis	478-482	467-471
Catabolism of amino acids	494-498	476-480
The Urea Cycle and nitrogen disposal	498-502	480-484

STUDENT RESPONSIBILITIES:

Students are expected to attend <u>all</u> classes, seminars and laboratory sessions. All assignments must be completed in full and handed in by the date specified. Refer to the College Policy on Student Rights and Responsibilities at <u>https://www.gprc.ab.ca/about/administration/policies/#academic_policies</u>

STATEMENT ON PLAGIARISM AND CHEATING:

Cheating and plagiarism will not be tolerated and there will be penalties. For a more precise definition of plagiarism and its consequences, refer to the Student Conduct section of the College Admission Guide at <u>http://www.gprc.ab.ca/programs/calendar/</u> or the College Policy on Student Misconduct: Plagiarism and Cheating at <u>http://www.gprc.ab.ca/about/administration/policies/</u>

**Note: all Academic and Administrative policies are available on the same page.