

# DEPARTMENT OF SCIENCE

#### COURSE OUTLINE – Fall 2022 BC2000: INTRODUCTORY BIOCHEMISTRY

### 3 (3-0-0) 45 Hours for 15 Weeks

Northwestern Polytechnic acknowledges that our campuses are located on Treaty 8 territory, the ancestral and present-day home to many diverse First Nations, Metis, and Inuit people. We are grateful to work, live and learn on the traditional territory of Duncan's First Nation, Horse Lake First Nation and Sturgeon Lake Cree Nation, who are the original caretakers of this land.

We acknowledge the history of this land and we are thankful for the opportunity to walk together in friendship, where we will encourage and promote positive change for present and future generations.

INSTRUCTOR: Beatrice Amar Ph.D.PHONE: 7805392031OFFICE: J208E-MAIL: BAmar@NWPolytech.caOFFICE HOURS: Wednesday and Friday:10 a.m. - 12 p.m.

#### CALENDAR DESCRIPTION:

This course is an introduction to the fundamental principles of biochemistry, protein structure and function; lipids and the structure of biological membranes; nucleotides and the structure of nucleic acids; bioenergetics and the metabolism of carbohydrates, lipids and nitrogen; the integration and regulation of cellular metabolism. This course is intended for students who require a one-term introduction to the fundamental principles of biochemistry, and for students who intend to take further courses in biochemistry.

### PREREQUISITE(S)/COREQUISITE: CH1010 and CH2610

#### **REQUIRED TEXT/RESOURCE MATERIALS:**

"Essential Biochemistry" (4th Edition, 2018 or 3rd Edition, 2014) Charlotte W. Pratt and Kathleen Cornely. John Wiley & Sons Inc. Publishers

#### SUPPLEMENTS:

Practice quizzes will be made available D2L course page to aid preparation for exams.

#### **DELIVERY MODE(S):**

| Classes | Tuesday  | 10.00 a.m. – 11.20 a.m. |
|---------|----------|-------------------------|
|         | Thursday | 10.00 a.m. – 11.20 a.m. |

# **COURSE OBJECTIVES:**

Students will gain a deeper understanding of how biomolecules interact and support life. Emphasis will be placed on the ability to analyze and interpret primary literature related to biochemical processes and metabolic diseases.

### **LEARNING OUTCOMES:**

Students will be able to:

- 1. To gain an understanding of the relationship of structure to function in biomolecules.
- 2. To gain a knowledge of the fundamental processes involved in energy generation and storage in living systems.
- 3. To understand the metabolic pathways and the regulation of biochemical pathways.
- 4. To develop critical thinking skills and scientific research and presentation skills.

### TRANSFERABILITY:

Please consult the Alberta Transfer Guide for more information. You may check to ensure the transferability of this course at the Alberta Transfer Guide main page <u>http://www.transferalberta.ca</u>.

\*\* Grade of D or D+ may not be acceptable for transfer to other post-secondary institutions. Students are cautioned that it is their responsibility to contact the receiving institutions to ensure transferability

### **EVALUATIONS:**

| Mid Term Exam I  | 20%  |
|------------------|------|
| Mid Term exam II | 25%  |
| Presentation     | 5%   |
| Assignments      | 20%  |
| Final Exam       | 30%  |
| Total            | 100% |

# GRADING CRITERIA: (The following criteria may be changed to suite the particular

# course/instructor)

Please note that most universities will not accept your course for transfer credit IF your grade is less than C-.

| Alpha Grade | 4-point    | Percentage | Alpha | 4-point    | Percentage |
|-------------|------------|------------|-------|------------|------------|
|             | Equivalent | Guidelines | Grade | Equivalent | Guidelines |
| A+          | 4.0        | 90-100     | C+    | 2.3        | 67-69      |
| А           | 4.0        | 85-89      | С     | 2.0        | 63-66      |
| A-          | 3.7        | 80-84      | C-    | 1.7        | 60-62      |
| B+          | 3.3        | 77-79      | D+    | 1.3        | 55-59      |
| В           | 3.0        | 73-76      | D     | 1.0        | 50-54      |
| B-          | 2.7        | 70-72      | F     | 0.0        | 00-49      |

# COURSE SCHEDULE/TENTATIVE TIMELINE:

| BC2000 Fall 2022                                  | Topic Outline & Text Readings |                               |  |
|---------------------------------------------------|-------------------------------|-------------------------------|--|
| Торіс                                             | 3 <sup>rd</sup> Edition pages | 4 <sup>th</sup> Edition pages |  |
| 1. Biological Molecules                           |                               |                               |  |
| Types of biomolecules                             | 3-6                           | 3-6                           |  |
| Biopolymers                                       | 6-10                          | 6-9                           |  |
| Nucleosides and nucleotides                       | 52-55                         | 52-55                         |  |
| Basic structure of DNA and RNA                    | 56-61                         | 56-61                         |  |
| Functions of Nucleic acids (Central Dogma)        | 61-65                         | 61-64                         |  |
| 2. Protein Structure and Function                 |                               |                               |  |
| Overview                                          | 87-88                         | 85                            |  |
| Amino acids                                       | 89-91                         | 86-90                         |  |
| Peptide bonds and primary structure               | 91-96                         | 90-94                         |  |
| Secondary structures                              | 96-99                         | 94-97                         |  |
| Tertiary structure and stabilization              | 99-104                        | 97-101                        |  |
| Protein folding & Quarternary structure           | 104-108                       | 101-106                       |  |
| Oxygen binding to myoglobin and haemoglobin       | 122-133                       | 120-129                       |  |
| 3. Lipids and Biological Membranes                |                               |                               |  |
| Fatty acids, triacylglycerols and membrane lipids | 220-227                       | 215-222                       |  |
| Lipid bilayers and membrane fluidity              | 227-230                       | 222-225                       |  |

| Membrane proteins                           | 230-233                      | 225-228                      |
|---------------------------------------------|------------------------------|------------------------------|
| Fluid Mosaic Model                          | 233-234                      | 228-229                      |
| Passive & Active membrane transport         | 246-255                      | 240-248                      |
| 4. Enzymes                                  |                              |                              |
| What is an enzyme?                          | 158-161                      | 154-157                      |
| Classifying enzymes                         | 161-162                      | 157-158                      |
| Co-enzymes and dietary vitamins             | 54-55; 320-322               | 54-55; 312-314               |
| Catalytic mechanisms                        | 162-171                      | 158-166                      |
| Substrate binding                           | 171-174                      | 166-171                      |
| Enzyme kinetics                             | 188-198                      | 183-192                      |
| Enzyme inhibition                           | 200-209                      | 194-200                      |
| Allosteric enzymes                          | 209-211                      | 200-203                      |
| Other <i>in vivo</i> regulatory mechanisms  | 211                          | 203                          |
| Co-enzymes and roles as electron carriers   | 316-317                      | 308-309                      |
| 5. Introduction to Metabolism               |                              |                              |
| Energy and metabolism                       | 10-14                        | 10-14                        |
| Food and Fuel                               | 308-311                      | 301-303                      |
| Storage and use of fuels                    | 312-314                      | 304-306                      |
| Metabolic pathways and common intermediates | 314-316                      | 306-308                      |
| Oxidation and reduction                     | 316-317                      | 308-309                      |
| Overview of metabolism                      | 318-320                      | 310-312                      |
| Free energy changes in metabolic reactions  | 323-325                      | 314-316                      |
| Energy currency, ATP, coupled reactions     | 325-330<br>Fig 3-3a          | 316-321<br>Fig 3-2a          |
| 6. Glucose Metabolism                       |                              |                              |
| Introduction                                | 290-294,<br>359 338-33       | 283-287;<br>349; 329         |
| Glycolysis                                  | 339-350                      | 330-340                      |
| Fates of Pyruvate                           | 350-354                      | 341-344                      |
| Anaerobic exercise and the Cori Cycle       | 513-514                      | 499-500                      |
| Gluconeogenesis and Glycogen metabolism     | 354-359                      | 344-349                      |
| Pentose phosphate pathway                   | 361-363                      | 350-352                      |
| Summary of glucose metabolism               | 363-364                      | 352-353                      |
| Hormonal regulation                         | 515-518; 277-280;<br>522-523 | 501-505; 270-273;<br>509-510 |

| 7. Citric Acid Cycle and Oxidative<br>Phosphorylation |           |           |
|-------------------------------------------------------|-----------|-----------|
| Introduction                                          | 370-371   | 362       |
| Conversion of pyruvate to acetyl-CoA                  | 371-374   | 362-365   |
| Reactions of the Citric Acid Cycle                    | 374-381   | 365-372   |
| Regulation of the Citric Acid Cycle                   | 381-382   | 372-373   |
| Catabolism, anabolism and anapleurotic reactions      | 384-388   | 374-378   |
| Overview of oxidative phosphorylation                 | 394-395   | 385       |
| Mitochondria and Electron transport chain             | 399-408   | 390-399   |
| Chemiosmosis                                          | 408-410   | 399-401   |
| ATP synthase                                          | 410-414   | 401-405   |
| ATP yield from aerobic catabolism of glucose          | 380-381   | 372       |
|                                                       |           |           |
| 8. Metabolism of Fats, Fatty Acids and<br>Cholesterol |           |           |
| Overview of fat metabolism                            | Fig. 17-4 | Fig. 17-4 |
| Transport of lipids                                   | 443-444   | 432-434   |
| TAG synthesis                                         | 463-465   | 452-454   |
| Lipases and TAG breakdown                             | 445       | 435       |
| Degradation of fatty acids (activation & transport)   | 445-446   | 435-436   |
| Degradation of fatty acids (β-oxidation)              | 446-453   | 436-443   |
| Glyoxylate cycle                                      | 386       | 377       |
| Fatty acid synthesis                                  | 453-459   | 443-449   |
| Regulation of fatty acid metabolism                   | 459-460   | 449-450   |
| Fat metabolism and diabetes                           | 522-524   | 509-511   |
| Ketone bodies and ketogenesis                         | 461-462   | 450-452   |
| Cholesterol synthesis and regulation                  | 466-467   | 454-457   |

#### STUDENT RESPONSIBILITIES:

Participation in lectures, and completion of assignments are important components of this course. Regular attendance in class is strongly advised. Students who chose not to attend or complete assignments must assume the risks involved.

# STATEMENT ON PLAGIARISM AND CHEATING:

Cheating and plagiarism will not be tolerated and there will be penalties. For a more precise definition of plagiarism and its consequences, refer to the Student Conduct section of the Northwestern Polytechnic Calendar at <a href="https://www.nwpolytech.ca/programs/calendar/">https://www.nwpolytech.ca/programs/calendar/</a> or the Student Rights and Responsibilities policy which can be found at <a href="https://www.nwpolytech.ca/about/administration/policies/index.html">https://www.nwpolytech.ca/programs/calendar/</a> or the Student Rights and Responsibilities policy which can be found at <a href="https://www.nwpolytech.ca/about/administration/policies/index.html">https://www.nwpolytech.ca/about/administration/policies/index.html</a>.

\*\*Note: all Academic and Administrative policies are available on the same page.